Investigation of carbon metabolism in "Dehalococcoides ethenogenes" strain 195 by use of isotopomer and transcriptomic analyses.
نویسندگان
چکیده
Members of the genus "Dehalococcoides" are the only known microorganisms that can completely dechlorinate tetrachloroethene and trichloroethene to the innocuous end product, ethene. This study examines the central metabolism in "Dehalococcoides ethenogenes" strain 195 via (13)C-labeled tracer experiments. Supported by the genome annotation and the transcript profile, isotopomer analysis of key metabolites clarifies ambiguities in the genome annotation and identifies an unusual biosynthetic pathway in strain 195. First, the (13)C-labeling studies revealed that strain 195 contains complete amino acid biosynthesis pathways, even though current genome annotation suggests that several of these pathways are incomplete. Second, the tricarboxylic acid cycle of strain 195 is confirmed to be branched, and the Wood-Ljungdahl carbon fixation pathway is shown to not be functionally active under our experimental conditions; rather, CO(2) is assimilated via two reactions, conversion of acetyl-coenzyme A (acetyl coenzyme A [acetyl-CoA]) to pyruvate catalyzed by pyruvate synthase (DET0724-0727) and pyruvate conversion to oxaloacetate via pyruvate carboxylase (DET0119-0120). Third, the (13)C-labeling studies also suggested that isoleucine is synthesized from acetyl-CoA and pyruvate via citramalate synthase (CimA, EC 2.3.1.182), rather than from the common pathway via threonine ammonia-lyase (EC 4.3.1.19). Finally, evidence is presented that strain 195 may contain an undocumented citrate synthase (>95% Re-type stereospecific), i.e., a novel Re-citrate synthase that is apparently different from the one recently reported in Clostridium kluyveri.
منابع مشابه
Temporal transcriptomic microarray analysis of "Dehalococcoides ethenogenes" strain 195 during the transition into stationary phase.
"Dehalococcoides" bacteria can reductively dehalogenate a wide range of halogenated organic pollutants. In this study, DNA microarrays were used to monitor dynamic changes in the transcriptome as "Dehalococcoides ethenogenes" strain 195 transitioned from exponential growth into stationary phase. In total, 415 nonredundant genes were identified as differentially expressed. As expected, genes inv...
متن کاملComparative genomics of "Dehalococcoides ethenogenes" 195 and an enrichment culture containing unsequenced "Dehalococcoides" strains.
Tetrachloroethene (PCE) and trichloroethene (TCE) are prevalent groundwater contaminants that can be completely reductively dehalogenated by some "Dehalococcoides" organisms. A Dehalococcoides-organism-containing microbial consortium (referred to as ANAS) with the ability to degrade TCE to ethene, an innocuous end product, was previously enriched from contaminated soil. A whole-genome photolith...
متن کاملEvidence for nitrogen fixation by "Dehalococcoides ethenogenes" strain 195.
Genome annotation of the chlorinated ethene-respiring "Dehalococcoides ethenogenes" strain 195 indicated the presence of a complete nitrogenase operon. Here, results from long-term growth experiments, gene expression, and (15)N(2)-isotope measurements confirm that strain 195 is capable of fixing atmospheric dinitrogen when a defined fixed-nitrogen source such as ammonium is unavailable.
متن کاملSelective utilization of exogenous amino acids by Dehalococcoides ethenogenes strain 195 and its effects on growth and dechlorination activity.
Bacteria of the genus Dehalococcoides are important members of bioremediation communities because of their ability to detoxify chloroethenes to the benign end product ethene. Genome-enabled studies conducted with Dehalococcoides ethenogenes 195 have revealed that two ATP-binding cassette (ABC)-type amino acid transporters are expressed during its exponential growth stages. In light of previous ...
متن کاملTranscriptomic microarray analysis of corrinoid responsive genes in Dehalococcoides ethenogenes strain 195.
Dehalococcoides ethenogenes strain 195 utilizes corrinoid-containing reductive dehalogenases to reduce the environmental pollutants tetrachloroethene and trichloroethene to ethene. Although corrinoids are essential for dehalogenation activity, strain 195 cannot biosynthesize corrinoids de novo. To improve our understanding of corrinoid physiology in this bacterium, whole-genome microarrays were...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 191 16 شماره
صفحات -
تاریخ انتشار 2009